Quick-Sort

(74962524679
(22524 (295279
o2 ()) (=9

Outline and Reading

¢ Quick-sort (§4.3)
= Algorithm
= Partition step
= Quick-sort tree
= Execution example
+ Analysis of quick-sort (4.3.1)
¢+ In-place quick-sort (§4.8)
* Summary of sorting algorithms

Quick-Sort
* Quick-sort is a randomized
sorting algorithm based D
on the divide-and-conquer D o D
paradigm:
= Divide: pick a random

element x (called pivot) and I
partition S into I:I o E

+ L elements less than x %F_J Y Y

+ E elements equal x L E G
+ G elements greater than x
= Recur: sort L and G
= Conquer: join L, E and G oo D
Quick-Sort 3

Quick-Sort 2
Partition 7
+ We partition an input Algorithm partition(S, p)
sequence as follows: Input sequence S, position p of pivot
= We remove, in turn, each Output subsequences L, E, G of the

clements of § less than, equal to,
or greater than the pivot, resp.
L, E, G < empty sequences
X « S.remove(p)
while —S.isEmpty()
y < S.remove(S.first())

element y from § and
= Weinsertyinto L, E or G,
depending on the result of
the comparison with the
pivot x
Each insertion and removal

.

. AN ify<x
is at the beginning or at the LoinsertLast(y)
end of a sequence, and i

elseif y=x

hence takes O(1) time E.insertLast(y)

¢ Thus, the partition step of else {p>x}
quick-sort takes O(n) time G.insertLast(y)
return L, £, G
Quick-Sort 4

Quick-Sort Tree

+ An execution of quick-sort is depicted by a binary tree
= Each node represents a recursive call of quick-sort and stores
+ Unsorted sequence before the execution and its pivot
+ Sorted sequence at the end of the execution
= The root is the initial call
= The leaves are calls on subsequences of size 0 or 1

(74962>5>24679]

2 N N 58

Quick-Sort 5

Execution Example

+ Pivot selection

(72943761)

Quick-Sort 6

Execution Example (cont.)

+ Partition, recursive call, pivot selection

(72943761 |

Execution Example (cont.)

+ Partition, recursive call, base case

(72943761 J

Execution Example (cont.)

* Recursive call, ..., base case, join

(72943761 J

(243151234

-~ ~
(151) e - -
-

Quick-Sort 9

Execution Example (cont.)

* Recursive call, pivot selection

(72943761 J
~
(243151234 (79z J
FET I CF T L
]
Quick-Sort 10

Execution Example (cont.)

¢ Partition, ..., recursive call, base case

(72943761 J
(243151234 7912
N
(151] (43534 (] 959
9 e

Quick-Sort 11

Execution Example (cont.)

+ Join, join
(72943761 512346779]
- Al
(243151234 797 > 7729

(151] (43534 (] 959
[) (-4
Quick-Sort 12

‘Worst-case Running Time

+ The worst case for quick-sort occurs when the pivot is the unique
minimum or maximum element

¢ One of L and G has size n — 1 and the other has size 0

¢ The running time is proportional to the sum
n+mn-1)+..+2+1

+ Thus, the worst-case running time of quick-sort is O(n?)

depth time
0 n
1 n-1
n-1 1 %

Quick-Sort 13

Expected Running Time

+ Consider a recursive call of quick-sort on a sequence of size s
= Good call: the sizes of L and G are each less than 3s/4
= Bad call: one of L and G has size greater than 3s/4

(72943761) (72943761)
= & o ame
(FEER) Gz)
Good call Bad call

+ A call is good with probability 1/2
= 1/2 of the possible pivots cause good calls:
(12345678910111213141516 |

Bad pivots Good pivots Bad pivots

Quick-Sort 14

, Expected Running Time, Part 2

Probabilistic Fact: The expected number of coin tosses required in
order to get k heads is 2k

¢ For a node of depth i, we expect

= /2 ancestors are good calls

= The size of the input sequence for the current call is at most (3/4)"2n

¢ Therefore, we have expected height

time per level

= Foranode of depth 2log,n, —— ¥\ 0 JTTTT on
the expected input size is one
= The expected height of the s(b) | - 0Oln)
quick-sort tree is O(log n)
+ The amount or work done at the **” (¢ o) () o

nodes of the same depth is O(n)

¢ Thus, the expected running time
of quick-sort is O(n log n)

total expected time: O(n log 1)

Quick-Sort 15

¢ Quick-sort can be implemented

to run in-place
+ In the partition step, we use Algorithm inPlaceQuickSort(S, 1, r)
replace operations to rearrange Input sequence S, ranks / and r

the elements of the input Output sequence S with the

sequence such that elements of rank between / and r
- the e|ement5 |eSS than the . rearranged 1n ncreasing order
pivot have rank less than & ifi>r
= the elements equal to the pivot return
have rank between i and & i < arandom integer between / and r
= the elements greater than the x « S.elemAtRank(i)
pivot have rank greater than & (h, k) < inPlacePartition(x)
+ The recursive calls consider inPlaceQuickSort(S, I, h — 1)
= elements with rank less than & inPlaceQuickSort(S, k + 1, r)
= elements with rank greater
than &
Quick-Sort 16

‘Summary of Sorting Algorithms

Algorithm Time Notes

+ in-place

ion- 2
selection-sort 0(") + slow (good for small inputs)

+ in-place

i ion- 2
insertion-sort O(n?) + slow (good for small inputs)

O(n log n) |+ in-place, randomized

qwck—sort expected + fastest (good for large inputs)
~ + in-place
heap-sort Onlogn) |, ¢ (aood for large inputs)
+ sequential data access
merge-sort O(n log n) G

+ fast (good for huge inputs)

Quick-Sort 17

